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1. Introduction 
 
Ultra stable oscillators of moderate size and cost still 

rely on quartz resonators. Such frequency sources provide 
reliability and robustness even in relatively harsh 
environmental conditions, although they cannot be 
considered as primary standards like atomic clocks whose 
nominal frequency is fixed by the intrinsic properties of 
the matter, and not by the dimensions of the device. 
Conversely, it is possible to make piezoelectric resonators 
sensitive to environmental quantities (temperature, force, 
acceleration, rotation rate) in a highly selective way.  
Doing so gives birth to a high-quality class of frequency-
output sensors, due to the good resolution granted by the 
intrinsic frequency stability of the resonator under constant 
conditions. Nevertheless, a precise analysis of such 
physical sensors is significantly complicated by thermal 
effects, whenever the sensor is operated over a large 
temperature range.  Even the basic phenomenon of thermal 
expansion is poorly addressed in dynamic analyzes 
provided by standard finite element packages. An 
excellent method to efficiently embed temperature effects 
in the analysis of resonant sensors consists of using the 
Lagrangian configuration, which refers the current state of 
the studied structure to the known geometry it occupies in 
a known stress-free reference state. Moreover, establishing 
the material behaviour laws in the framework of the 
Lagrangian configuration guarantees that the potential 
energy be a true scalar, thereby leading to models which 

are self consistent from the thermodynamic point of view. 
We present an example illustrating the use of the so-called 
Lagrangian method to embed thermal effects in the 
analytical modelling of miniature quartz resonant sensors 
of the strip-resonator type developed for precision 
applications. 

 
 
2. The Lagrangian description of vibrating  
    solids 

 
In most resonant sensors providing a frequency 

output, the vibration can be described as a small acoustic 
field superimposed onto a static bias.  After the pioneering 
works of Toupin [1] and Thurston [2] established a 
consistent theoretical background without much describing 
its practical application, the use of the Lagrangian 
configuration to systematically describe the above-
mentioned class of problems was developed and 
successfully applied, for instance by Tiersten and co-
workers, to piezoelectric resonator problems with various 
types of biasing states [3-5]. The starting point of the 
Lagrangian approach consists of considering the three sets 
of coordinates which can possibly be used to describe 
small vibrations superimposed onto a static bias, as shown 
in Fig. 1. 

In this figure, XL denotes the set of so-called reference 
coordinates which are defined as the material coordinates 
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of the solid at equilibrium, in the absence of both the 
biasing state and the vibration. We can observe that these 
coordinates are fixed and known, which is interesting both 
from the theoretical and practical points of view. ξα 
represents the set of material coordinates of the solid once 
the bias is applied and before any vibration exists. 

 
 

 
Fig. 1. The three possible sets of coordinates for a quasi-

statically biased small vibration. 
 

 
It is assumed that the bias completely defines the 

mapping between this intermediate state and the reference 
state. Finally, one should also define the so-called final or 
actually time-dependent material coordinates of the 
vibrating body submitted to a bias. Thus, obviously, for a 
consistent analysis of problems involving biases like static 
forces F and/or imposed values of the local temperature θ, 
one should write: 
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and, consequently, we can consider using various sets of 
strain gradients for our purposes 
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together with the introduction of the acoustic 
displacement, presumably infinitesimal in the case of 
linear vibrations: 
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We systematically use the comma notation for a partial 
derivative, and remark that using different characters for 
the sets of coordinates guarantees that the formulae are not 
ambiguous. Also, the convention of an implicit sum over 
dummy (repeated) indices is systematically used. In 
counterpart, this approach introduces a frequent need for a 
Kronecker tensor δ in the expressions.  The Kronecker 
tensor is equal to 1 when its two indices have the same 
value, and is equal to 0 otherwise.  

In this framework, the well–established classical field 
equations expressing the conservation of linear momentum 
and electric charge are  
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where D denotes the electric displacement, ρ  stands for 
the mass density in the final state, TM is the pure 
mechanical stress tensor and TE is Maxwell's electrostatic 
tensor: 
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In addition,  E denotes the macroscopic electric field 

and ε0 denotes the dielectric permittivity of a vacuum. 
Thus, one observes that all quantities in Eq. (4) are 
actually written in terms of the coordinates yi of the final 
state. Correspondingly, the essential boundary conditions 
of an electro-elastic problem should be expressed on the 
external surface S of the body, considered in its final state 
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where brackets are used to denote the jump of  a given 
quantity over the interface and n is the outer normal unit in 
the final state. There is nothing wrong at this point, but 
two problems arise when one attempts to solve the 
problem, especially when the studied structures involve 
piezoelectric media: 

 It has been demonstrated that the condition of 
rotational invariance of the thermodynamic potential 
required one to establish the behaviour laws for 
piezoelectrics, making it necessary to combine the 
electric field and the deformation gradients along with 
the finite strain, i.e. mixing quantities mapped onto 
the final coordinates with quantities mapped onto the 
reference coordinates. Then, the constitutive equations 
must be established in an intrinsically non-linear 
theory, whose essentials can be found for instance in 
[6]. 

 In the case of biased structures, the exact location of 
the actual surface S may prove to be difficult. Of 
course, since the so-called linear vibrations are 
infinitesimally small, we can merge the final and 
intermediate coordinates  in the definition of the 
surface  

 
δiα yi ≈ ξα                              (7) 

 
Nevertheless, the static deformation arising from the 

biasing state may be much larger than the acoustic 
deformation itself. For instance, in conjunction with the 
anisotropy of thermal expansion in the crystals, the change 
in the shape of the solid due to temperature variations may 
seriously impact upon the rigorous treatment of the 
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dynamic problem throughout its boundary conditions, 
since the classical treatment consists of solving the 
dynamic problem in terms of the intermediate coordinates. 

For instance, in an authoritative work for the 
determination of the temperature derivatives of the elastic 
constants of quartz [7] based on resonance measurements 
of rotated plates of quartz, the changes in the density and 
thickness of plates with temperature variations were 
correctly taken into account, but the change in the normal 
of the anisotropic plate with respect to the internal 
symmetry axes of quartz was omitted. This omission is 
mentioned for instance in [5], but it was previously 
demonstrated in [8] that the resulting error can be easily 
avoided by using the reference coordinates instead of the 
intermediate coordinates to map the problem. 

The treatment of the electro-elastic problem in terms of 
the final coordinates yi is said to be Eulerian. To overcome 
the fundamental  difficulties regarding the derivation of 
the rotationally invariant constitutive relations (material 
behaviour laws) briefly described in the first item above, 
one can use the following field equations in terms of the 
fixed and known reference coordinates: 
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where ρ0 is mass density in the fixed reference state. These 
Eqs. must be accompanied by the essential natural 
boundary conditions on free surfaces delimiting the 
studied solid structure: 

 
[ ]

0
0

,
0

0

=Δ
=+

LLL

E
Lj

M
LjL

n
KKn

          (9) 

Here, one introduces the so-called Piola-Kirchhoff stress 
tensors K together with the material electric displacement 
Δ. These quantities are related to the classical quantities 
through the conservation of elementary surface forces and 
charges  and the changes of  variables XL ↔ yi: 
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where ti denotes  the force acting on an elementary surface 
dS in the final state, corresponding to dS0 in the unbiased 
reference state, and σ is the surface charge borne by the 
same elementary surface. Note that the treatment is the 
same for the pure mechanical force or for the electrostatic 
force, so that we did not repeat the formula for KM and KE. 
By using chain derivative rules associated with the 
mapping of Eq. (1), one readily obtains the relations 
between the tensors of interest: 
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where J is the determinant of the Jacobian matrix [yi,L]. 
The treatment of electroelastic problems in terms of the 
coordinate XL of the reference state by means of Eqs. (8,9) 
is said to be Lagrangian. After separating the purely static 
and the dynamic incremental terms in above equations, it 
was found that the Lagrangian equations of acoustic fields 
superimposed on a static mechanical bias can be written in 
the following form 

0~~
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where the dynamic incremental Piola-Kirchhoff and 
material electric displacement tensors can be expanded in 
the following manner: 
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Here, G1 and G2 elastic and piezoelectric effective 

constants are the sums of a bias–dependent and bias–
independent terms 
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Here, c and e are the tensors of the so-called 

fundamental elastic, piezoelectric and dielectric constants, 
and the additional terms denoted with a caret ^ depend on 
the static bias. All necessary formulae are found in Sec.2 
of [4]. Due to the small piezoelectric coupling of quartz,  
piezoelectricity can be omitted in the study of many 
phenomena in quartz resonators, so we reproduce below 
only the expression of  ĉ valid in the absence of any 
applied static electric field 
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T1 is the static stress,  E1 is the static strain, and c3 is the  
tensor of the non linear third order constants, while wa,K 
represent elements of the tensors of the static strain 
gradients. This formula is useful in determining the 
sensitivity of resonators to static forces, but it also shows 
that the computation of high order sensitivities cannot be 
practically achieved from fundamental constants, because 
they would require the measurement of higher order elastic 
coefficients and their thermal derivatives. Nevertheless, 
the temperature sensitivity of resonators submitted to 
transient and non homogeneous temperature variations can 
be obtained at the first order, with the help of the above 
equations. When they are used to determine the frequency 
sensitivity of resonators submitted to static bias of entirely 
mechanical origin, it is required that all static quantities 
appearing above are known. In this type of application, the 
perturbation method described in [4] is a precious tool in 
the great majority of practical cases, where the biasing 
states used to achieve frequency-output sensitivity are not 
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homogeneous. Nevertheless, a simple but universally-
encountered biasing effect is the thermal expansion, which 
is stress-free whenever the temperature is uniform and the 
mounting of the sensor does not preclude its changes in 
volume.  In that simple but useful case, the mapping 
between the reference and intermediate coordinates can be 
made explicit, whereas the uniformity of the bias 
suppresses the need for a perturbation method.  Under 
such circumstances, it becomes quite simple to compute 
the static temperature sensitivity of a resonator upon a 
mapping onto the reference coordinates of its structure. 
This was performed first for the purely elastic case only 
[8,9], and was extended later to the piezoelectric case 
[10,11] where appropriate sets of values of the temperature 
derivatives of the elastic constants of quartz for use in the 
framework of the Lagrangian configuration were defined 
and numerical values were computed from resonance 
measurements from trapped-energy quartz resonators.  In 
this framework, it was shown that the equations of motion 
in the Lagrangian configuration can be linearized in the 
following manner [11] 
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where the tensors of the effective material elastic, 
piezoelectric and permittivity  constants G, R, N can be 
measured directly as functions of temperature, which 
avoids the need to link them to the above-mentioned 
fundamental constants whose determination is practically 
out of reach for the time being.  The effective constants G 
and R exhibit lower symmetries than the classical 
constants defined in the Linear Piezoelectricity exposures 
found in textbooks. As a consequence, the elastic constants  
should be stored in a 9 by 9 matrix instead of a 6 by 6 one. 
Values for quartz can be found in [11]. 
 
 

3. Temperature sensitivity of high frequency  
     miniature resonant sensors  

 
In the course of a joint research between the 

laboratories of the two authors, new miniature temperature 
sensors were developed and realized at ISSP-BAS from 
narrow quartz plates in NLC-cut operated around 29 MHz 
[12,13]. It was observed that the compromise between the 
miniaturization and the stability of these resonant sensors 
is quite good [14]. We present below an application of the 
Lagrangian method to the modelling of such miniature 
sensors, together with the first obtained results.  

 
3.1 Simple bi-dimensional model of strip sensors 
 
The basic design of the sensors is schematically 

illustrated in Fig. 2. They can be made from Y+θ  singly 
rotated thin plates of class-32 crystals. In that case, pure 
shear modes can be driven by an electric field oriented 
along the normal to the plate. The length of the plate 
corresponds to the x3 direction of the rotated plates, 

according to the IEEE standard definition of Y+θ  singly 
rotated plates. The mass-loading effect arising from the 
deposited electrodes confines the acoustic energy in the 
electroded region. This feature permits one to firmly hold 
the plates at one or both ends, with practically no loss of 
acoustic energy, which ensures optimal values of the Q-
factor of the resonators.  Conversely, there is no such 
energy trapping effect along x1, (i.e. the width of the 
resonator) since the electrodes extend over its whole width 
(schematic configuration). 
 

 
 

Fig. 2 Schematic design of a strip resonator 
(top view). 

 
The specifics of the behaviour of such strip resonators 

already appear in a 2D analysis neglecting the influence of 
the transverse behaviour along the length of the resonator. 
Then, the 2D propagation equations pertaining to the 
purely elastic case and expressed in the Lagrangian 
configuration, are obtained by substituting 0/ 3 ≡∂∂ x  for 
all variables in (16) while retaining only the mechanical 
terms: 
 

MMLL

LL

uGK
uK

,

0,~
~

εεαα

αα ρ
=

= &&
                  (17) 

 
with L and M equal to 1 or 2, but not 3, whereas the 
essential boundary conditions onto free surfaces are  
 

0, 0 SonuG MML =εεγ                    (18) 
 

where the effective elastic constants in the Lagrangian 
configuration are known functions of temperature [11]. 
More elaborate models of the same 2D problem in the 
absence of temperature effects were proposed in previous 
papers [12,13]. Although the model presented here is 
slightly less accurate from the point of view of acoustics, it 
enlightens the specific mode couplings at the base of the of 
strip sensors and it still takes into account more elastic 
constants than the 3D model of [15], which proposed a 
unique 3D semi-analytical description of strip resonators 
in the framework of the widely recognized Mindlin 
method for the analysis of high frequency vibrations of 
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anisotropic and piezoelectric plates [16,17]. Predicting the 
temperature sensitivity of strip sensors in the framework of 
semi-analytical models is still a challenging task.  

As a first step, we should determine the solutions of the 
eigenvalues problem for the pure shear propagation along 
the thickness of the plate 
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where one takes 2h0 as the plate thickness at reference 
temperature. It is very easy to add correction factors on the 
essential terms in the model, to approximately account 
forthe piezoelectric effect, in case of need, so that this 
issue is left over in this work which concentrates on 
temperature effects. 

Adding the mass loading effect of the electrodes can be 
easily performed (see [12,13] for instance). The 
appearance of the value 2 of the indices in (19) comes 
from the rather standard notation for a quartz resonator 
where the coordinate x2 of the working frame is along the 
thickness of plate. According to the reduced symmetry of 
the effective constants, we need the G99, G22, G44, G29, G49, 
G24 constants in our notation [11], to describe the general 
case for plate orientation. For the here–retained type of 
cut, G29 and G49 vanish. After normalization, the three 
eigensolutions uα

μ are stored in a 3 by 3 square matrix Q 
which is used to define a new set of constants through a 
linear transformation, in the following manner [18]: 
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The transformed elastic constants have a different 

symmetry than the G coefficients. One obtains: 
T
mrpl

T
lprm cc ≡                (21) 

 
This variable change projects the mechanical 

displacement onto the base of pure thickness eigenmodes, 
which permits one to retain G24 and to accurately take into 
account the linear coupling between the pure thickness 
shear u1 and thickness extensional deformation u2 in the 
subsequently built model. In the present work, we retained 
the following terms in the 2D model after the 
transformation was performed 
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where we omitted the superscript T denoting the 
transformed coefficients, to ease the typesetting and 
readability of the equations. We neglect the coupling 
between u3 and the two other components (u1,u2) which 
are the modal components of interest. The natural essential 
boundary conditions on the major surfaces of the plate are 
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In regions coated with thin metallic electrodes, we 

should use the following boundary conditions instead 
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where hf is the film thickness and h0 the half thickness of 
the plate in the reference configuration, which is by 
definition constant with respect to temperature variations, 
whereas the transformed elastic coefficients are known 
functions of temperature. Then one looks for guided waves 
in the following form 
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By substitution into (24) and expressing the need for 

non–identically null solutions, one obtains an algebraic 
determinantal equation 
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It has two analytical roots η=f(ξ,ω) which in turn 

determine two values of the amplitude ratios β1/β2. In the 
most general case, we should look for the solutions as a 
combination of the two so-called partial waves which are 
determined in this process.  After substitution of that 
combination into the boundary conditions (23), we obtain 
a transcendental determinantal equation. Its numerical 
solution at the current temperature provides the basic 
dispersion curves presented in Fig. 3 for the case T=25°C. 
These curves can and must be computed at other 
temperatures required in the analysis before one can 
proceed further.  
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Fig.3. Basic dispersion curves of NLC-cut at 25°C. 
 

This plot was determined after normalizing the angular 
frequency ω and lateral wave number ξ by their values for 
the pure thickness case (1D resonances along the vertical 
axis). 
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In this manner, the dimensionless curves can be used 
for various designs with different aspect ratios of the 
narrow plate. The influence of temperature variations on 
the plot of the dispersion curves is small, so that it is 
sufficient to present only the curves at 25°C as a typical 
plot.  

In the next step of the method, one considers the most 
general case of the vibration as a combination of the 
above–defined branches of the basic dispersion curves. 
Moreover, it is known that the modes providing good 
stability as well as electrical output in such plates should 
have a dominant thickness shear component. In addition, 
minimum values of the lateral wave number are preferred, 
since oscillations of the thickness shear displacement 
component under the electrodes will reduce the generation 
of electric charges and thereby decrease the motional 
capacitance and coupling factor of the resonator. 

 
 
 

 
 

 
Fig. 4. Dimensionless graph Ω(w/t) for NLC cut strip sensors 

obtained from the here–presented two-dimensional model 
 

 

 
 

Fig. 5. Amplitude distribution in the cross section at 25°C for 
w/t=24.5. 

 
The correct conditions can happen in regions of Ω 

slightly above the horizontal line Ω=1 in Fig. 3. If one 
restricts the analysis to real values of the wave number γ, 
(imaginary or complex values will characterize decaying 
waves that will not carry any energy at all along the plate 
surface), one observes in Fig. 3 that only three branches 
must be kept in the combination 
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Fig. 6. Amplitude distribution in the cross section at -
25°C for w/t=24.5. 

 
 
 
 

From the bottom to the top, these branches are for 
flexure, plate waves, and essential fast shear in the here–
considered cut. Then, the actual 2D model is completed 
once the balance between the contribution of the three 
branches is determined together with the resonant 
frequency, by obeying the edge boundary conditions  
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Unfortunately, these boundary conditions cannot 
rigorously be satisfied by simple combinations of guided 
waves, so that their influence is approximately taken into 
account by means of a variational equation derived from 
Hamilton's principle 
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where δu1 and δu2 denote the variation of solutions 

arising from an arbitrary change of the Cm constants 
introduced in (28) to denote the respective weights of each 
branch into the combination. This leads to a final 
determinantal equation in terms of either Ω or γ, from 
which every piece of the model is fixed after a relatively 
straightforward numerical solution which we shall not 
discuss here. 

 
3.2 Results and discussion 
 
The model was applied to the computation of the 

(u1,u2) amplitude distributions in the cross–section of 
NLC-cut strip sensors made at ISSP. We have investigated 
the ranges of aspect ratio 24 < w/t < 26 and of temperature 
–25°C < θ < 175°C. Fig. 4 shows a plot of the 
dimensionless dispersion curve Ω(w/t) obtained at 

θ=25°C, and Figs. 5 and 6 show plots of the amplitude 
distribution at the respective temperatures -25 and +25°C. 
In the last two figures, one can observe that the amplitude 
distributions do change with temperature, and from that 
one is able to predict the noticeable fluctuations of the 
electrical parameters of the sensors in their operating 
range, in terms of temperature. The predicted behaviour of 
the sensors is in qualitative agreement with previous 
computations by precise FEA and experimental 
measurement by X–ray topography [12]. Nevertheless, we 
have found that the aspect ratio w/t induced rather small 
variations of the frequency–temperature characteristic, of 
the order of a very few ppm/°C.  Since the NLC–cut is 
rather temperature–sensitive, this can be omitted but 
should be taken care of in the case of temperature–
compensated cuts, such as the AT-cut or BT-cut. 

 
4. Conclusions 
 
In this paper, we summarized all required steps of the 

Lagrangian method to predict the frequency–temperature 
characteristic of the so–called strip sensors specially 
designed for thermometric applications. The method is 
particularly useful whenever the geometry and the 
crystallographic orientation of the resonators strongly 
depend on temperature. Nevertheless, other problems also 
greatly benefit from using the Lagrangian method. For 
instance, it was successfully used in [13] to compute the 
force–frequency characteristic of the same kind of 
temperature sensors. Due to that, it became possible to 
validate the experiments, despite the presence of 
temperature fluctuations, since the traction apparatus used 
for the measurements could not be fully thermo–stabilized. 
The unified framework provided by the Lagrangian 
configuration for all sensing purposes relying on the 
control of some kind of bias is intrinsically a great 
advantage. This advantage is not defeated by the need for 
material constants exhibiting lower symmetries than the 
usual ones, since this reduction of symmetry does not 
actually add more partial derivatives in the balance 
equation, in comparison with the classical method. Then, 
knowing and using the Lagrangian method is mandatory in 
the study of resonant acoustic sensors, whenever their 
sensitivity arises from variations of the bias which 
influence the effective material constants. 
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